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Wave forces on vertical axisymmetric bodies 

By JARED L. BLACK 
Chevron Oil Field Research Company, La Habra, California 90631 

(Received 11 March 1974 and in revised form 9 July 1974)  

An integral-equation formulation is used to calculate wave forces on bodies 
having a vertical axis of symmetry. The development enables one to calculate 
the forces without completely determining the local pressure field, thus offering 
a considerable reduction of computational effort. Numerical results are presented 
for a hemisphere a t  the water surface and vertical circular cylinders. 

1. Introduction 
The purpose of this paper is t’o present an integral-equation formulation for 

calculating the forces induced by water waves incident on a rigid body having 
a vertical axis of symmet,ry. This general technique was used by John (1950) in 
formulating a method for calculating wave forces on arbitrarily shaped bodies 
and several authors (Garrison & Chow 1972; Lebreton & Cormault 1969) have 
presented numerical results based on this formulation. These results demonstrate 
the generality of the method and its versatility with regard to body form; how- 
ever, forces are obtained through the solution of a large matrix equation, a time- 
consuming operation. 

In  certain cases it is possible t o  reduce the numerical requirements by tailoring 
the problem formulation to a particular class of body shapes. Black, Mei & Bray 
(1971) studied wave forces on vertical cylindrical bodies defined by constant 
co-ordinate surfaces (see also Miles & Gilbert 1968; Garrett 1971) and obtained 
solutions efficiently through the application of Schwinger’s variational technique. 

Havelock (1955) used a spherical co-ordinate system in formulating the 
problem of a hemisphere heaving a t  the free surface of an infinitely deep fluid. 
The approximate solution, based on the four leading terms of an infinite series, 
agrees well with results presented herein. Milgram & Halkyard (1971) also 
studied the heaving-hemisphere problem and presented two solutions based on 
the integral-equation method. One was a straightforward application of John’s 
formulation and required the solution of 64 simultaneous equations. By taking 
advantage of the problem symmetry, the second method required the solution 
of only eight simultaneous equations thus offering a considerable saving of 
numerical effort. This computational procedure could not be extended beyond 
the heaving problem because symmetry, a requirement of its application, was lost. 

I n  this paper, we shall develop an integral-equation formulation that allows 
efficient calculation of wave forces on any smooth contoured body having a 
vertical axis of symmetry. The formulation is based on linear wave theory 
(Stoker 1957) and assumes finite water depth (see figure 1). The development is 

24 F L M  67 



370 J .  L. Black 

Q 
I 

FIGURE 1. Definition sketch showing a submerged sphere. 

summarized as follows. The incident and unknown scattered wave potentials 
and Green's function are written as expansions in cylindrical waves. By invoking 
Green's theorem, the scattered wave potential is expressed as the unknown in 
a Fredholm integral equation. Integrating over the angular dependence reduces 
the integral equation from a surface integral to an infinite number of line-integral 
equations; however, because the body has vertical symmetry, only two of the 
reduced equations contribute to the net force on the body. The determination of 
the force through the solution of the two reduced integral equations is an efficient 
operation relative to the effort required to solve a three-dimensional integral 
equation. 

This formulation is of practical ocean engineering interest because offshore 
facilities, such as single-point mooring dolphins, subsurface storage tanks and 
buoyant components of floating platforms, often possess vertical symmetry. 

2. Boundary-value problem 
The governing equation for the velocity potential 4 e i w t  and Green's function 

G, assuming small amplitude irrotational motion (Wehausen & Laitone 1960), is 

where (r ,  6, x )  are the cylindrical co-ordinates of a point in the fluid domain, 
(7, p, c)  are the co-ordinates of a source point and 6 is the Dirac delta function. 
The free-surface condition is 

(2.1 b )  ( q a x  - a) (4, G) = 0, 2 = 0, 

where a = w"g, and the bottom condition is 

a(#, G)/& = 0, z = - h. (2.1 c )  
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In addition to (2.1) the velocity potential must satisfy 

Vq5.n = 0 ( 2 . 2 )  

on the body to ensure zero flow normal to the body surface; n is the unit normal 
vector oriented out of t,he fluid. 

The velocity potential is separated into incident and scattered components 
q5i + q9 with the condition that the scattered potential represents outward- 
propagating waves. The incident wave is specified as a plane progressive wave 
of amplitude a, propagating in the positive-x direction. Its potential iii cylindrical 
co-ordinates is (Miles & Gilbert 1968) 

m 

nk=O 
q5i = a,fl(z) 3 em( - i)”& J,(kr) cos m8. (2.3) 

This expression satisfies (2.1) and is related to the incident wave amplitude 
through a, = - (iw/y) alfl(0). 

A Green’s function, developecl on the basis of a methocl outlined by Morse & 
Feshbach (1953, chap. 7),  satisfying (2.1) is 

The upper terms in the brackets are used when r > 7 and the lower terms when 
7 > r .  Terms appearing in (2.3) and (2.4) are defined as follows: 

€, = 1, 6, = 2 ,  m 3 1, 
f , ( z )  = 24(h - r1 sin2 k,h-d cos kn(z + h), 

where the k,  are defined by 

The Hankel function H,,(x) in (2.4) is of the second kind and satisfies the radia- 
tion condition; J,, K ,  and I, are standard Bessel functions. 

Equation (2.4) differs from the Green’s function John used in that it is non- 
singular; the point source is represented by a discontinuity in the gradient of the 
function rather than a singularity. Thorne (1953) treats the general class of 
singular Green’s functions, but since they are not completely separable, they do 
not serve a usefuI purpose in our formulation. 

kn tan k, h = - cr, k, = ik. 

3. Scattered wave potential 
The scattered wave potential is expressed in terms of the Green’s function by 

invoking Green’s theorem. By virtue of (2.1 a) ,  the volume integraI in Green’s 
theorem is readily integrated, leaving 

q9, source in fluid, 

0, source outside boundary. 
{@VG - GV@) . n da = &@, source on boundary, 1 i (3.1) 
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The right side of (3.1), by definition, accounts for the fact that only half the 
source flow enters the fluid domain when the source is on the boundary. The 
integration and differentiation is with respect to the (7, p, $) variables and the 
limits of integration include the body surface, the free surface, the bottom and 
a verticaI cylindrical surface in the fluid at  r,~ = m. However, because of (2.1 b, c), 
the integrand vanishes on the free surface and the bottom; the integrand also 
vanishes on the surface at  infinity because both the scattered wave potential and 
the Green’s function represent outward-propagat,ing waves. The integration is 
therefore performed only over the surface of the body. 

Invoking (2.2) and allowing sources only on the surface of the body, (3.1) 
becomes 

+@ = 11 F V G .  nda +I/ GV@. nda ,  (3.2) 

a Fredholm integral equation of the second kind. Defining 

W m 

m=O m=O 
p = a, C XmCoSmB, q5i = a, 3 9 + m ~ ~ ~ m 8 ,  (3.3a, b )  

and substituting these along with (2.4 a) into (3.2), one obtains, upon integration 

dl ,  m = 0 , 1 , 2  ,.... (3.4) 

The unit normal vector (nv, 0, n6) is oriented out of the fluid; the integration is 
carried out over the line defined by the intersection of the body with the plane 
8 = 0. Note that because of symmetry (nB = 0) there is no mixing of angular 
modes. 

Each integral equation is reduced to a linear system of equations by approxi- 
mating the integration by the product of the integrand and the length of a 
straight-line segment of the contour; the result is 

N 

i 
2 (aE-Jij/4n)x? = by, m = 0, 1,2, ..., (3.5) 

where Sij is the Kronecker delta, 

and (3.7) 

The subscripts on g and @ indicate that the functions are evaluated at  the ith 
and j th  nodes, the subscripts relating to the node co-ordinates as follows: i for 
(yi, zi) and j  for (rj, L$). The components of the normal vector are identified by the 
subscripts on n, the first subscript indicating the horizontal or vertical component 
and the second identifying the node. The length of the body-contour segment at 
the j t h  node is Ali. 
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4. Wave forces 

pressure is, from Bernoulli’s equation (Stoker 1957, p. 32) ,  

p = - iwp$ eiWt, 

The wave forces are obtained by integrating the pressure over the body. The 

p = fluid density. 

At a point ( r ,  8, z )  on the body, the pressure is 
m 

m=O 
pi = - iwpa, eiWt 2 (x? + @?) cos me. (4.1) 

It can be easily shown that because of symmetry the vertical force depends only 
on the m = 0 angular mode and the horizontal force on the first mode, hence the 
forces are given bv 

where the horizontal force is obtained when m = 1 and n = nTi and the vertical 
force when m = 0 and n = nzi. The moment about a y axis passing through 
x = 0, z = C R i s  

The detailed pressure distribution can be found, if desired, by solving for 
sufficient modes of ( 3 . 5 )  and substituting into (4 .1 ) .  

5. Results 
Forces are presented for two geometric shapes: a hemisphere at the surface and 

a vertical circular cylinder. The force is normalized according to 

where 

F e i a  = ICI eia/(pgaoR2),  

a = tan-l {Im C/Re G} 

and R is a characteristic dimension of the body. Subscripts x and z on 9 and a 
will indicate the horizontal and vertical components, respectively, of the force 
and its phase. 

Figure 3 shows the normalized horizontal and vertical forces on a hemisphere 
at the water surface. Also shown is the vertical force obtained from Havelock’s 
(1955)  infinite-depth wave damping coefficient via Haskind’s theorem (see 
Newman 1962).  Good agreement with the infinite-depth result is exhibited at 
high and low frequencies and the influence of the finite water depth is apparent 
in the mid-frequency range for the case of h/R = 2 ;  for h/R = 4 ,  the finite- and 
infinite-depth solutions for the vertical force are essentially equal. The numerical 
result is based on a six-node specification of the body. Garrison & Chow (1972)  and 
Milgram & Halkyard (1971)  present numerical results based on John’s formula- 
tion and use 132 and 64 nodes, respectively. The results of Milgram & Halkyard 
tend to diverge from the correct solution at  high frequencies, perhaps because of 
insufficient node density. 
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FIGURE 2 .  Forces on a sphere of radius R fixed with its origin at the free surface. The 
infinite-depth vertical force (dashed curve) is based on Havelock’s heaving-hemisphere 
solution. 

Forces on vertical cylinders are presented in figure 3. For a cylinder of height h 
and radius R = i h  the results agree with the MacCamy & Fuchs (1954) closed- 
form solution to within 1% over the range of frequencies 0 < rR < 2. This 
accuracy was achieved with an eight-node specification of the cylinder. Garrison 
& Chow treated a similar cylinder problem and used 252 nodes to obtain 
equivalent accuracy. A comparison is also made with the variational solution 
presented by Black et ab. (1971) for a cylinder radius R = &h extending from the 
bottom up to one-half the water depth. The results agree to within 6 % for the 
horizontal force and 1 2 %  for the vertical force. In  this case one might expect 
only fair agreement because the sharp edge at the top of the cylinder is difficult 
to approximate with this numerical procedure. This body was specified with 
eight nodes. 

The solutions presented here are approximate primarily because the boundary 
condition on the body is satisfied at  a finite number of points. In  principle, the 
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FIGURE 3. (a )  Horizontal force on a vertical circular cylinder of radius R = $h and height h: 
-__ , closed-form solution; +, numerical result. ( b )  Horizontal force on a truncated 
vertical cylinder of radius R = +h extending from the bottom to a height of hh : ---, 
variational solution; + , numerical result. ( c )  Vertical force on the truncated cylinder: 
--- , variational solution; + , numerical result. 

solution accuracy can be improved by increasing the number of nodes used to  
describe the body; however, small node spacing adversely affects the rate of 
convergence of tjhe series in (3.6) and (3.7). It was found by numerical trial that 
the series convergence rate was roughly l/n for 2: = j and the rate improved for 
the more widely separated nodes (i += j). This slow rate of convergence for i = j 
seems to be a characteristic of series expansions of singular functions. I n  general, 
for h/R < 10, the series were sufficiently approximated by summing only 
30 terms. 

We have not considered the question of uniqueness and completeness of these 
solutions; it does seem intuitively reasonable, however, to assume that the condi- 
tions established by John (1950) apply to this formulation. John’s uniqueness 
condition requires that a surface-piercing body intersect the free surface 
perpendicularly and that the body surface be a single-valued function within 
the intersection of the body contour and the free surface; the hemisphere satisfies 
this condition. 

6. Conclusions 
The primary advantage of this formulation is the computational efficiency i t  

offers in determining the net body forces. Numerical trials indicate that the 
symmetric formulation generally produces solutions in one-sixtieth of the time 
required by our program based on John’s formulation. The pressure distribution 
on the body is not a part of the wave-force solution but can be found by additional 
calculations. This solution method can be expanded to  allow the determination 
of the hydrodynamic characteristics of a body (added mass and damping coeffi- 
cient) without significantly increasing the computational requirements. 
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This research was performed at  Chevron Oil Field Research Company, 
La Habra, California. Coding of the formulation was expertly accomplished by 
L. S. Blank. 
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